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Avoided deforestation conservation projects necessitate comparisons between observations in protected
forests and what-would-have-happened if the project did not exist (often referred to as the baseline, or
counterfactual scenario) [1]. Nevertheless, it is imperative that forest carbon projects deliver the carbon
emission reductions they report, and there are various methods that can be used to estimate these coun-
terfactual scenarios. West et al. [2] used the synthetic control method to choose pools of controls with
similar covariate structure to avoided unplanned deforestation conservation project areas; they do not con-
sider other methodologies such as planned avoided deforestation, or improved forest management. Synthetic
controls were calculated from the mean deforestation rate of pools, weighted by covariate similarity with
the project. We agree that the synthetic control method could potentially improve the evaluation of forest
carbon projects. However, synthetic controls are also vulnerable to “gaming” or bias through inappropri-
ate donor pool design/sampling and such econometric statistical methods require further context-specific
refinement [1] before they can improve upon existing approaches.

West et al. [2] claim that most forest carbon projects overestimate avoided deforestation or do not signifi-
cantly reduce deforestation. These conclusions are poorly supported by their analysis because:

• The implemented synthetic control approach can suffer from bias [3] due to substantial and incompat-
ible differences between deforestation drivers, forest type and (bio)geography that are not adequately
captured by the structure of covariates that are used to form the synthetic control. Important covari-
ates are ignored, such as distance to roads and rivers [4, 5], fire risk [6], or indicators of forest structure
[7] that predict biomass, timber value and logging effort. Using the authors’ code, we extracted the
locations of controls used to create the synthetic control for project-856 (Figure 1), located in Colom-
bia’s Pacific-montane-forest. No weighted donors were in the same political jurisdiction or ecoregion
as the project and the highest weighted donor (0.46) was in the Amazon, 900 km away. We have
also attempted to reproduce the synthetic controls for all considered project areas; interactive maps of
these locations are presented at https://permian-global-research.github.io/science-letter-west-et-al/.

• Calculations derived from Global Forest Change (GFC) [8] inherit known sensitivity and accuracy
issues [9, 10]. It is inappropriate to compare GFC-based calculations with those reported by projects,
which are better calibrated for local contexts, because meaningful comparisons require deforestation
rates to be derived using identical methods. Further, it is accepted that GFC is inappropriate for
site-level deforestation assessment, in isolation [10, 11].
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• West et al. [2] do not demonstrate that synthetic control counterfactuals are more accurate than
project methods, undermining their ability to interpret differences between the synthetic control and
project-reported deforestation rates.

Figure 1: Map of the donor pool and their weighted contribution to the synthetic control for Project-856. The project is
located to the north of Colombia’s Choco Department (political jurisdiction), in the Darien Mountain range and comprises a
transition from lowland to montane rainforest. Also presented are ecoregions [12] that intersect weighted donors. Two donors
form more than 84% of the synthetic control, and no weighted donors were in the same ecoregion as the project with the
highest weighted donor being 900 km away, in the Amazon. Project-856 was selected because it was the only one where fully
reproducible code was made available. To see interactive maps of this and all other projects please see https://permian-global-
research.github.io/science-letter-west-et-al/. Elevation data from https://registry.opendata.aws/terrain-tiles.

The adoption of econometric methods to evaluate the efficacy of voluntary carbon projects is an important
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development in the field [1], yet these methods need improvement. Critically, the drivers of deforestation
are complex and highly variable across space and time. We believe that there is a need to more carefully
consider the connections between spatial and econometric statistical techniques, in the context of remote
sensing, to maximise the accuracy and utility of these methods [13].

No method of reconstructing a counterfactual can claim to represent absolute truth. In order to improve
the evaluation of avoided deforestation conservation projects, one potential way forward could be to adopt a
simulation framework to benchmark the efficacy of synthetic controls alongside alternative methods. Simula-
tions to reconstruct counterfactuals on non-project areas will provide quantitative metrics for counterfactual
reconstruction accuracy. We hope this letter will stimulate further discussion on this topic and encourage
the development and adoption of improved inference methods in voluntary carbon projects.
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